Home » Resources » Engineers are Tasked with Development of Energy Master Plans

Engineers are Tasked with Development of Energy Master Plans

The solution for resolving the integration of energy and sustainability projects and assets in large industrial, manufacturing and institutional facilities is a fully integrated energy master plan. This is a long-term, broad-scoped plan that puts in place a company's strategy to optimize all facets of energy efficiency and sustainability. This begins at the purchase of energy and other utilities, and covers all aspects of their use, distribution, measurement and minimization of waste. The plan establishes recommendations going forward on how to best utilize energy assets, how and when to replace them, and how to be most efficient when a company needs to add to them.


Energy master plans also provide the individualized and detailed steps to plan for energy and sustainable systems within each building of a whole-building campus or multiple-location context. The buildings, and the energy and sustainable initiatives installed within them, are totally integrated into one uniform and holistic system.
Although the components of the energy master plan are not entirely new, the necessity of putting this all together into a single integrated package is a new approach, something that many larger companies are now recognizing they need in order to make smarter energy decisions.

 

This approach allows energy managers to recognize opportunities for conservation, sustainable design and renewable energy that more narrowly-focused energy audits might not.
An integrated energy master plan, because of its comprehensive protocol, will not only address facility operations, but process functions for review, as well. For example, integration of discrete control automation systems within different process functions in a cement plant into one centralized controls architecture can significantly reduce process cycle times, improving throughput, energy usage and equipment ROI. Not to mention production per labor hour. An integrated energy master plan would address this.


A food processor that is blanching and chilling pasta in 10,000-pound batches per hour will find that by switching to a continuous cooking and chilling method it can process the same volume of pasta in the same time, while reducing its cost for heating the cooking water. An integrated energy master plan would not only discover the benefit of the continuous processing method over batch processing, but would see the energy conservation in using the spent, warmed-up chiller water as make-up water for the cooker. Thereby reducing the energy needed to bring the cooker up to its required 200° F cooking temperature.


Energy master planning new jersey companies integrate facility and process functions is of critical value to an industrial, manufacturing or institutional facility. Through a systematic analysis of these interdependencies and optimized energy benefits, a much more efficient and cost-effective energy plan can be realized that takes into account the long-term business goals of a company.